
Int.	J	Latest	Trends	Fin.	Eco.	Sc.	 	 	 	 	 	 	 	 					Vol‐4	No.	3	September,	2014	

	

778 

Modeling long memory in the EU stock market: 

Evidence from the STOXX 50 returns 

Sonia R. Bentes*1, Nuno Ferreira#2 

* ISCAL, Av. Miguel Bombarda 20, 1069-035 Lisbon, Portugal and BRU-IUL, Av. das Forcas Armadas, 1649-026 
Lisbon, Portugal 

1smbentes@iscal.ipl.pt 

 
#Department of Quantitative Methods, IBS-ISCTE Business School, ISCTE 

Avenida das Forças Armadas, Lisboa, Portugal 
1nuno.ferreira@iscte.pt 

 

 

Abstract - This paper examines the persistence 
behaviour of STOXX 50 returns. To this end, we 
estimated the GARCH, IGARCH and FIGARCH 
models based on a data set comprising the daily returns 
from January 5th, 1987 to December 27th, 2013. The 
results show that the long-memory in the volatility 
returns constitutes an intrinsic and empirically 
significant characteristic of the data and are, therefore, 
in consonance with previous evidence on the subject. 
Moreover, our findings reveal that the FIGARCH is the 
best model to capture linear dependence in the 
conditional variance of the STOXX 50 returns as given 
by the information criteria. 
Keywords  ‐  Stock long-memory; persistence; volatility; 

conditional variance; FIGARCH. 

 

1. Introduction 

A major topic of research in Finance concerns 
the degree of persistence or long memory in stock 
returns. By long memory we mean a high degree of 
persistence in the time series. In particular, this 
concept can be generally expressed either in the time 
domain or in the frequency domain. In the time 
domain, long memory is characterized by a slow 
decay of the autocorrelation function of time series 
with larger sample data. This means that observations 
far from each other are still strongly correlated and 
decay at a slow rate. On the other hand, in the 
frequency domain the same information comes in the 
form of a spectrum. Thus, if the spectral density is 
unbounded at low frequencies, time series is said to 
exhibit a long memory process. Though both 

definitions are not equivalent they are related by the 
Hurst exponent – H (Beran, 1994), who was the first 
author to document this property in nature. Motivated 
by the desire to understand the persistence of the 
steam flow and therefore the design of reservoirs 
Hurst (1951) analyzed 900 geophysical time series 
and found significant long-term correlations among 
the fluctuation of the river Nile outflow. After his 
seminal work several other studies documented 
persistence in very distinct domains of Science, such 
as, Biology, Geophysics, Climatology and 
Economics, inter alia.  

In addition, this phenomenon has also gathered 
much attention in Finance, which bases on an 
alternative approach built on the ARCH 
(Autoregressive Conditional Heteroskedasticity) type 
models to capture persistence in time series. In 
particular, the GARCH (General ARCH) process 
introduced by Bollerslev (1986) has become quite 
popular in modelling conditional dependence in 
financial volatility. However, though this constitutes 
an effective tool to capture volatility clustering it has 
revealed inappropriate to accommodate for 
persistence since it assumes that shocks decay at a 
fast exponential rate. Therefore, it is only suited to 
account for short-run effects. In an attempt to 
overcome this limitation Engle and Bolerslev (1986) 
developed the IGARCH (Integrated GARCH) 
framework, which allows infinite persistence. 
However, the infinite memory is a very unrealistic 
assumption, which motivated the need for an 
alternative approach. In the light of this, Baillie et al. 
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(1996) formulated the FIGARCH (Fractional 
Integrated) model, which characterizes an 
intermediate range of persistence. This is 
accomplished through the introduction of the 
fractional difference parameter d. Another advantage 
of this model is that it nets both GARCH, for d = 0, 
and IGARCH, for d = 1, processes as special cases. 

Bearing on these models we investigate the 
degree of persistence of the EU stock market using 
the STOXX 50 index as a proxy. We use a data set 
comprising daily data from January 5th, 1987 to 
December 27th, 2013. The empirical results are, 
therefore, intended to broaden the available evidence 
to date and to characterize conditional dependence in 
the volatility process of the EU stock market. 
Moreover, we report estimates of the GARCH, 
IGARCH and FIGARCH parameters and use the 
information criteria to discriminate between models. 
Our aim is to find which model is more appropriate to 
characterize the dependence in the volatility process. 

The rest of the paper proceeds as follows. 
Section 2 outlines the conditional volatility models, 
which is followed by a description and initial analysis 
of the data in Section 3. Section 4 presents the 
empirical results and, finally, Section 5 concludes the 
paper. 

2. Model framework 

2.1 GARCH model 

Following Engle (1982) consider the time series 
yt and the associated prediction 

error  1t t t ty E y   , where  1 .tE   is the 

expectation of the conditional mean on the 
information set at time t-1. The standard 
GARCH(p,q) model introduced by Bollerslev (1986) 
is defined as: 

   2 2 2 ,t t tL L         (1) 

where 0  , 0  , 0  , L denotes the lag or 

backshift operator 

  2
1 2 ... q

qL L L L         and 

  2
1 2 ... p

pL L L L       .  Hence, 

according to the GARCH formulation the conditional 
variance is a function of (i) the past squared residuals 
and of (ii) the lagged values of the variance itself 
(Daly, 2008). In general, a GARCH(1,1) specification 
is sufficient to describe the vast majority of time 

series and rarely is any higher order model estimated. 
The great advantages of this model when compared 
to the seminal ARCH of Engle (1982) are two-fold: 
(i) it is more parsimonious and (ii) avoids overfitting. 
Consequently, the model is less prone to breach non-
negativity constraints. 

A common empirical finding in most applied 
work is the apparent persistence implied by the 
estimates for the conditional variance. This is 
manifested by the presence of an approximate unit 
root in the autoregressive polynomial, that 

is, 1  , meaning that shocks are infinitely 

persistent (Bollerslev et al., 1992). As the GARCH 
formulation considers that shocks decay at a fast 
geometric rate this specification is not appropriate to 
describe long memory, being only suited to 
accommodate for short-memory phenomena. 

2.2 IGARCH model 

In order to overcome this limitation Engle and 
Bollerslev (1986) derived the IGARCH model, which 
captures I(1) type processes for the conditional 
variance as infinite persistence remains important for 
forecasts of all horizons. Assuming that 

2 2
t t t     the GARCH model can be re-written 

in the form of an ARMA(m,p) process 

    21 1 ,t tL L L          (2) 

where         1
1 1L L L L         and 

all roots of  L  and  1 L    lie outside the 

unit root circle. 

However, despite its insight when compared to 
its predecessor this model is not fully satisfactory in 
describing long memory in the volatility process as 
shocks in the IGARCH methodology never die out. 

2.3 FIGARCH model 

In an attempt to describe the long memory 
process in a more realistic way Baillie et al. ([1] 
introduced a new class of models called FIGARCH. 
In contrast to an I(0) time series in which shocks die 
out at a fast geometric rate or an I(1) time series 
where there is no mean reversion, shocks to an I(d) 
time series with 0 < d < 1 decay at a very slow 
hyperbolic rate. 

The FIGARCH(p,d,q) model can be obtained by 
replacing the difference operator in Eq. (2) with a 
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fractional differencing operator  1
d

L  as in the 

following 
expression:

    21 1 .
d

t tL L L           (3) 

Rearranging the terms in Eq. (3), one can write 
the FIGARCH model as follows: 

       2 21 1 1 .
d

t tL L L L              
(4) 

The conditional variance of 2
t  is obtained by: 

 
 
   2 21 1 ,

1 1

d

t t

L
L

L L

 
 

 
    

         

(5) 

which corresponds to 

 
   2 2 ,

1t tL
L

  


 
  

 (6) 

where 
  2

1 2 ...L L L   
 

The FIGARCH metodology provides greater 
flexibility for modeling the conditional variance, 
because it accommodates the covariance stationary 
GARCH model when d = 0 and the IGARCH model 
when d = 1, as special cases. For the FIGARCH 
model the persistence of shocks to the conditional 
variance or the degree of long memory is measured 
by the fractional differencing parameter d. Thus, the 
attraction of this methodology is that for 0 < d < 1, it 
is sufficiently flexible to allow for an intermediate 
range of long memory. It is worthy to note that the 
parameters of the FIGARCH model can be estimated 
by an approximate quasi-maximum likelihood 
estimation technique (Bollerslev and Wooldridge, 
1992). 

3. Data and some preliminary statistical 

results 

The data employed in this study consist of the 
daily closing prices for the STOXX 50 during the 
period from January 5th, 1987 to December 27th, 
2013, which totals 7040 observations. STOXX 50 
index was designed to provide a Blue-chip 
representation of supersector leaders in the Eurozone 
and covers 50 stocks from 12 Eurozone countries: 
Austria, Belgium, Finland, France, Germany, Greece, 
Ireland, Italy, Luxembourg, the Netherlands, Portugal 
and Spain. Because the STOXX 50 is considered to 
be a proxy of the overall Eurozone stock market, it is 

frequently used as the underlying index for several 
derivative financial instruments such as options, 
futures, index funds and structured products. Figure 1 
plots the STOXX 50 daily returns’. 

 

Figure 1. STOXX 50 daily returns’ 

 

More specifically, we define the STOXX 50 
daily returns’ as  

1ln ln .t t tR P P    (7) 

where Rt denotes the index returns at time t, and Pt 
and Pt-1, prices at time t and t-1, respectively. The 
data were collected from Datastream database. 

Preliminary analysis for the STOXX 50 returns 
over the period under consideration is displayed in 
Table 1. Starting with the descriptive statistics we 
find that the average daily returns are positive and 
very small when compared to the standard deviation. 
The series is also characterized by negative skewness 
and high levels of positive kustosis, indicative of a 
heavier tailed distribution than the Normal. Jarque-
Bera (J-B) test further confirms departure from 
normality, which can be graphically observed by 
looking at the plot of the histogram (Fig. 2). 
Accordingly, these results encourage the adoption of 
an alternative distribution, which embodies these 
features of the data, such as, the GED (Generalized 
Error Distribution) distribution. 
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Table 1. Preliminary analysis of STOXX 50 daily returns 

    
Panel A. Summary statistics  
        
 Mean Std. Dev. Skewness Kurtosis J-B Q(10) BG(10) 
 0.000176 0.013272 -0.15006 9.031538 10696.21** 56.159** 5.549556**
    
Panel B. Heteroskedasticity tests  
        
  ARCH-LM   Q2(10)   
  155.5133** 3792.4**  
        
Panel C. Unit root tests  
  ADF KPSS  
 intercept -40.0337**  0.178982   
 trend + intercept -40.04168**  0.086268   

  

Notes: 1. Denotes significantly at the 1% level. 2. J-B represents the statistics of the Jarque and Bera (1987)’s normal distribution 
test. 3. Q(10) denotes the Ljiung-Box Q test for the 10th order serial correlation for the null hypothesis of no autocorrelation. 4. BG 
reveals the Breusch-Godfrey test for the null hypothesis of no serial correlation up to 10 lags. 5. ARCH-LM refers to the ARCH 
test for the null of no autoregressive conditional heteroskedasticity up to 10 lags. 6. Q2(10) is the Ljiung-Box Q test for serial 
correlation in the squared standardized residuals with 10 lags, which is used to check for ARCH effects. 7. ADF defines the 
Augmented Dickey and Fuller (1979) test for the null of non-stationarity. Critical values: -3.43 (1%) and -2.86 (5%) for constant 
and -3.96 (1%) and -3.41 (5%) for constant and linear trend. 8. KPSS indicates the Kwiatkowski, Phillips, Schmidt and Shin (1992) 
test for the null of stationarity. Critical values: 0.739 (1%) and 0.463 (5%) for constant and 0.216 (1%) and 0.146 (5%) for constant 
and linear trend. 

Moreover, the Ljiung-Box Q-statistics (Q(10)) 
and the Breusch-Godfrey statistics both reveal serial 
correlation. In addition, the results for the ARCH-LM 
and Q2(10) tests are highly significant, thus unveiling 
ARCH effects.  

0

4 0 0

8 0 0

1 2 0 0

1 6 0 0

2 0 0 0

-0 .0 5 0 .0 0 0 .0 5 0 .1 0
 

Figure 2. Histogram of the daily returns of the STOXX 50 

 

Turning to the unit root tests (Table 1 – Panel 
C), an analysis of the ADF and KPSS statistics 
unfolds that the return series is stationary. In fact, the 
ADF test rejects the null hypothesis of non-
stationarity at the 1% significance level, while for the 
KPSS the null of stationarity in not rejected. Both 

tests were estimated considering a constant and a 
constant and a linear trend in the exogenous 
regressors. 

 

4. Model estimates 

In order to remove any serial correlation present 
in the data1 we first fit an AR(p) model 
(Autoregressive model). In this context we chose an 
AR(5) specification to account for this feature of the 
data. Table 2 provides the residual analysis for this 
specification. Results show that the residuals are non-
normally distributed as the Jarque-Bera test is 
rejected at the 1% level. This is also implied by the 
negative skewness and excess kurtosis evidenced by 
the residual series. In addition, the Ljiung-Box and 
Breusch-Godfrey statistics both indicate no evidence 
of serial dependence, thus revealing that this 
specification is adequate in describing the linear 
dependence in the data. Nevertheless, residuals still 
exhibit conditional heteroskedasticity given that the 
ARCH-LM and the Ljiung-Box statistics of the 
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squared residuals are all significant at the 1% level. 
Therefore, a specification that accounts for this 

property should be used to model the data. 

 
Table 2. Residual’s analysis for the fitted AR(p) model 

    
Panel A. Summary statistics  
        
 Mean Std. Dev. Skewness Kurtosis J-B Q(10) BG(10)
 -2.37E-20 0.013227 -0.247482 8.742039 9735.055**7.5577 0.984831
    
Panel B. Heteroskedasticity tests  
        
  ARCH-LM   Q2 (10)   
  156.7961** 3825.3**  

 
Notes: 1. Denotes significantly at the 1% level. 2. J-B represents the statistics of the Jarque and Bera (1987)’s normal distribution test. 
3. Q(10) denotes the Ljiung-Box Q test for the 10th order serial correlation for the null hypothesis of no autocorrelation. 4. BG reveals 
the Breusch-Godfrey test for the null hypothesis of no serial correlation up to 10 lags. 5. ARCH-LM refers to the ARCH test for the 
null of no autoregressive conditional heteroskedasticity up to 10 lags. 6. Q2(10) is the Ljiung-Box Q test for serial correlation in the 
squared standardized residuals with 10 lags, which is used to check for ARCH effects. 7. ADF defines the Augmented Dickey and 
Fuller (1979) test for the null of non-stationarity. Critical values: -3.43 (1%) and -2.86 (5%) for constant and -3.96 (1%) and -3.41 
(5%) for constant and linear trend.  8. KPSS indicates the Kwiatkowski, Phillips, Schmidt and Shin (1992) test for the null of 
stationarity. Critical values: 0.739 (1%) and 0.463 (5%) for constant and 0.216 (1%) and 0.146 (5%) for constant and linear trend. 

Given this, we start by fitting the standard 
GARCH(1,1). Subsequently, in order to account for 
persistence the IGARCH(1,1) and FIGARCH(1,d,1) 
specifications are also estimated. All parameters were 
estimated by quasi maximum likelihood estimation 
method in terms of the BFGS optimization algorithm 
using the econometric package of OxMetrics 5.00. 
Since the returns follow a distribution with thicker 
tails than the normal, as shown in Section 3, we 
assumed a GED distribution for estimation purposes. 
Model estimates and diagnostic tests are provided in 
Table 3. As one can observe, the parameters  ,  , 

  of the GARCH equation and the tail coefficient of 

the GED distribution are all positive and found to be 
highly significant. Further, there is also evidence of 

strong persistence in the return series, as 1  , 

which motivated the estimation of the IGARCH(1,1) 
and FIGARCH(1,d,1) models. As in the GARCH 
case, results for these specifications uncover positive 
and highly significant parameters at the 1% level. A 
fractional difference parameter of 0.46053 was found 
for the return series, which shows a moderate level of 
persistence.  

A number of diagnostic tests were then 
performed in order to assess the adequacy of these 
models in describing the returns volatility. According 
to our results, the p-values of the Ljung-Box Q 
statistic test at lag 10 of the standardized residuals for 
all models fail to reject the null of no autocorrelation 

at the 1% significance level. Therefore, all models 
appear to be adequate in describing the linear 
dependence in the return series. In addition, for all 
the three models considered the ARCH-LM(10) test 
cannot reject the null hypothesis of no ARCH effects. 
This is corroborated by the Ljiung-Box statistics of 
the squared residuals, which is significant at the 1% 
level, thus unfolding that these specifications are 
sufficient to capture conditional heteroskedasticity in 
the conditional variance equation. Finally, there is 
still evidence of non-normality in the residual series 
as the Jarque-Bera test rejects the null of Gaussianity 
at the 1% level. 

Having estimated these three specifications one 
question remains to be answered: which one is the 
best model to describe conditional dependence in the 
volatility process? In order to discriminate between 
models we employ the LL (log-likelihood), AIC 
(Akaike Information Criterion) and SIC (Schwarz 
Information Criterion) information criteria. 
According to Sin and White [13] the most appropriate 
model to describe the data is the one that maximizes 
the LL function and minimizes the SIC and AIC 
criteria. In our particular case, the model that fulfills 
these conditions is the FIGARCH(1,d,1) model. This 
is not surprising as the results obtained in the 
GARCH formulation also suggested persistence since 

the sum of  and   is very close to 1. 
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Table 3. GARCH(1,1), IGARCH(1,1) and FIGARCH (1,d,1) 
estimates 

    
Parameter GARCH IGARCH FIGARCH
 (1,1) (1,1) (1,d,1) 
   
    
 0.019349** 0.014945** 1.579819**
 (0.0000) (0.0001) (0.0053)
    d --- --- 0.46053**
 --- --- (0.0000) 
 0.096188** 0.104375** 0.121130**
 (0.0000) (0.0000) (0.0020)
 0.894336 0.895625** 0.518799**
 (0.0000) (0.0000) (0.0000) 
GED 1.31078 1.295030** 1.321006**
 (0.0000) (0.0000) (0.0000)
LL 22026.727 22023.625 22041.272
AIC -6.255641 -6.255043 -6.259489 
SIC -6.245896 -6.246273 -6.24877
J-B 14696** 18727** 15000**
 (0.00000) (0.00000) (0.00000) 
Q(10) 7.49615 7.64307 8.61503 
 (0.1862771) (0.1770350) (0.1254403)
ARCH-LM 0.13182 0.13897 0.11751 
 (0.9994) (0.9992) (0.9996) 
Q2(10) 1.32262 1.38635 1.18414 
 (0.9952764) (0.9944382) (0.9967962)







 
Notes: 1. The p-values are included in parenthesis. 2. GED refers 
to the tail coefficient of the GED distribution. 3. LL refers to the 
log-likelihood value 4. SIC designates the Schwarz Information 
Criterion. 5. AIC denotes the Akaike Information Criterion. 6. ** 
Indicates the rejection of the null hypothesis at the 1% significance 
level. 7. J-B represents the statistics of the Jarque and Bera 
(1987)’s normal distribution test. 8. Q(10) denotes the Ljiung-Box 
Q test for the 10th order serial correlation for the null hypothesis of 
no autocorrelation. 9. ARCH-LM refers to the ARCH test for the 
null of no autoregressive conditional heteroskedasticity up to 10 
lags. 10. Q2(10) is the Ljiung-Box Q test for serial correlation in 
the squared standardized residuals with 10 lags, which is used to 
check for ARCH effects. 

 

5. Conclusions 

In order to examine the degree of persistence of 
the STOXX 50 daily returns’ we estimated three 
different models of conditional volatility – GARCH, 
IGARCH and FIGARCH models. To this end, we 
collected data from January 5th, 1987 to December 
27th, 2013.  

Basically, we conducted our study in three steps: 
first, we provided a preliminary analysis on the data 
based on the descriptive statistics of the variable 
under consideration. Our results showed that the 

STOXX 50 returns did not follow a normal 
distribution. In addition, we demonstrated that though 
prices were non-stationary returns were stationary, 
thus enabling further analysis. Moreover, we also 
found serial correlation and conditional 
heteroskedasticity in the return series. Second, and in 
order to capture the autocorrelation we fitted an 
AR(5) model, which proved to be sufficient to 
remove any serial dependence in the series. 
Nonetheless, heteroskedasticity was still present in 
the returns. Finally, we estimated the GARCH, 
IGARCH and FIGARCH parameters and used the 
information criteria to discriminate between models. 
Our results showed a moderate level of persistence (d 
= 0.46053). Furthermore, the FIGARCH model was 
proven to be the best model to describe the data. 
Finally, residual tests also revealed absence of serial 
correlation and ARCH effects. 
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