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Abstract - The purpose of this work is to determine how 
well criteria designed to help the selection of the 
adequate number of market segments perform in 
recovering small niche market segments, in mixture 
regressions of normal data. As in real world data the 
true number of market segments is unknown, the 
results of this study are based on experimental data. 
The simulation experiment compares 27 segment 
retention criteria, comprising 14 information criteria 
and 13 classification-based criteria. The results reveal 
that AIC3, AIC4, HQ, BIC, CAIC, ICLBIC and 
ICOMPLBIC are the best criteria in recovering small 
niche segments and encourage its use.  

Keywords - Market segmentation, niche markets, 
mixture regression models, experimental design. 

1. Introduction 

Mixture regression models have recently 
received increasing attention from both academics 
and practitioners as a statistical model-based 
approach to deal with consumer heterogeneity and 
thus to identify effective market segments. In fact, 
several studies have set out to assess the relative 
performance of different segmentation methods for 
segmenting the market (Vriens et al. 1996, Magidson 
and Vermunt 2002, Andrews et al. 2010, Kim and 
Lee 2011) and concluded that mixture regression 
modelling outperformed other approaches in terms of 
marketing strategy potential. Mixture regression 
models “are the newest of the segmentation methods” 
(Kim and Lee, 2011: 157) and claimed to be the 
“most powerful algorithm for market segmentation” 
(Wedel and Kamakura 2000: 26). According to 
Andrews et al. (2010: 1) this approach is clearly 
preferred “if it is important to understand the true 

segmentation structure in a market as well as the 
nature of the regression relationships within 
segments”. 

However, in spite of the popularity of mixture 
regression models for normal data in market 
segmentation problems, the decision of how many 
market segments to keep for managerial decisions is, 
according to many authors (DeSarbo et al. 1997, 
Wedel and DeSarbo 1995, Wedel and Kamakura 
2000, Hawkins et al. 2001, Andrews and Currim 
2003a,b, Sarstedt 2008), an open issue without a 
satisfactory statistical solution. To assess the true 
number of market segments is essential because 
many marketing decisions -segmentation, targeting, 
positioning, marketing mix – depend on the correct 
specification of the models used as input to these 
decisions (Sarstedt 2008). A misspecification of the 
model resulting in under or over specification might 
lead to erroneous estimations of the response by 
consumers to marketing efforts.  

In order to reduce some of the subjectivity in 
this task, managers often rely on heuristics as 
information and classification-based criteria to guide 
them on the selection of the model to pick (Dillon 
and Mukherjee, 2005).  Therefore, it is important to 
understand how the segment retention criteria 
behave. Besides, since the true number of market 
segments in real world data is unknown, the 
evaluation of the effectiveness of segment criteria is 
usually accomplished through an experimental 
design. It is generally clear from previous simulation 
studies focusing on the segment retention problem in 
mixture regression models that the type of 
distribution being mixed, the model specification and 
the characteristics of the market affect the accuracy 
of commonly used segment retention criteria and that 
additional research should continue to search for 
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better criteria for market segmentation under specific 
data characteristics.  

Consequently, the aim of this work is to 
determine how well criteria designed to help the 
selection of the adequate number of market segments 
perform in mixture regression models of normal data, 
addressing a special market condition not considered 
in previous studies, that is considering into the same 
simulated sample small niche segments with different 
degrees of separation and different sizes. As a large 
number of criteria were not considered before, we 
aim at comparing the performance of 27 criteria.   

We aim at providing guidelines to marketing 
practitioners to improve the use of the model fit 
indices to identify small market segments (Goller et 
al 2002). 

The plan of this work is as follows: we start 
reviewing the mixture regression model for normal 
data, followed by a brief description of the criteria 
that we aim to compare and a summary of the results 
obtained in previous studies on this matter. Next, we 
describe the experimental design used to generate the 
simulated data. After that, we provide a discussion of 
the findings of the study and finish with a conclusion. 

2. Background 
2.1. Multivariate Normal Mixture Regression 

Mixture regression models are predictive 
approaches for segmentation analysis (Wedel and 
Kamakura 2000). Indeed, the rationale of this 
statistical approach is to identify segments that are 
homogeneous in terms of response coefficients 
(Magidson and Vermunt 2002), thus providing a 
direct linkage between actual behaviour (i.e., the 
dependent variable) in the marketplace and 
managerially actionable variables of the marketing 
mix or consumer characteristics (i.e., the predictors). 
As the number and structure of market segments are 
determined by the researcher on the basis of the 
results of the data analysis, mixture regression 
models are also post hoc approaches (Wedel and 
Kamakura 2010). Thus, to help the analysis of the 
available approaches to select the number of market 
segments, a brief description of the notation of the 
well-known classical mixture regression model 
(Wedel and DeSarbo, 1995) is previously presented. 
Let: 

1,...,  indicate derived segments;

1,...,  indicate consumers;

1,...,  indicate repeated observations from consumer ;

1,...,  indicate explanatory variables;
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s S

n N

r R n

j J

j th







 

 

oefficient for the -  cluster;

;

 be the covariance matrix for segment ;

 be the value of the dependent variable for repeated measure  on consumer ;

;

 be the value of the -

s js

s

nr

n nr

njr

s th

s

y r n

y

x j th










β

Σ

y

  
 independent variable for repeated measure  on consumer ;

.n njr

r n

xx

Assume that the metric dependent vector  n nryy  is 

distributed as a finite mixture of S conditional 
multivariate normal densities (1): 
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 0 1 s
   (3) 

1

1



S

s
s

.    (4) 

Given a sample of N  independent consumers, one 
can thus derive the likelihood (5) and the log-
likelihood (6) expressions: 

 
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The implementation of the maximum likelihood 
procedure is done by using an Expectation-
Maximization – EM type framework (Dempster et al. 
1977). In order to derive the EM algorithm it is 
necessary to introduce non-observed data via the 
indicator function: 1nsz  , if n comes from latent 

class s and 0nsz  , otherwise; it is assumed that 
nsz  

are i.i.d multinomial. So, the joint likelihood of the 
“complete data”  n nryy  and  n nszz  for all 

consumers is: 

 
1 1 1 1

ln ln , , ln
   

    
N S N S

c ns s n n s s ns s
n s n s
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Once estimates of λ, Σ and β are obtained for 
any M-step procedure, one can assign each consumer 
n to each market segment S via estimated posterior 
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probability (applying Bayes’ rule), providing a fuzzy 
clustering (E-step):  

 
 

1

, ,

, ,
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
s s n s s

ns S

s s n s s
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f
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y X β Σ

y X β Σ

, (8) 

where 
1

1
S

ns
s

p


 , and 0 1nsp  . 

The expectation and maximization steps of this 
algorithm are alternated until convergence of a 
sequence of log-likelihood values is obtained. 

2.2. The Criteria 

Retaining the right number of market segments 
as long been a practical issue confronting marketing 
researchers who use mixture regression models to 
identify groups of homogeneous consumers that have 
clear marketing strategy potential. To guide them on 
this decision, we aim at comparing the performance 
of 13 information criteria and 14 classification-based 
criteria, described subsequently, through a simulation 
experiment. Information Criteria attempt to balance 
the increase in fit obtained against the larger number 
of parameters estimated for models with more 
clusters. As the likelihood increases with the addition 
of a component to a mixture model, these criteria 
account for over-parameterization assuming the 
general form  

   IC 2ln  s sL dk , where  sk  is the 

number of parameters associated to a solution with S 
clusters and d is some constant or the “marginal cost” 
per parameter (Bozdogan, 1987). Information Criteria 
are a general family, including criteria that are 
estimates of (relative) Kullback-Leibler distance, 
approaches that have been derived within a Bayesian 
framework for model selection and those named 
consistent criteria. However, it is also important to 
ensure that the segments are sufficiently separated to 
the selected solution. To evaluate the ability of a 
mixture model in providing well-separated clusters, 
an entropy statistic can be used to evaluate the degree 
of separation in the estimated posterior probabilities. 
This approach yields the Classification Criteria.  
Some measures are derived in the context of mixture 
models and other are “imported” from the fuzzy 
literature (Bezdek et al., 1997).  Accordingly, the 
quantities pns are interpreted as partial memberships 
in the context of fuzzy indices and as probabilities of 
membership in the context of probabilistic indices. 
The reader is referred to the references cited below 
(Table 1) for a detailed discussion of the theoretical 
underpinnings of the criteria compared in this study. 

2.3. Previous simulation studies  

Few comprehensive studies have been published 
focusing on the segment retention problem in mixture 
regression models of normal data. The first work, by 
Hawkins et al. (2001), examined the performance of 
12 base criteria, namely AIC (Akaike, 1973), AIC3 

(Bozdogan, 1994), MDL (Rissanen, 1986, 1987), 
ICOMP (Bozdogan, 1993), CL, NEC (Celeux and 
Soromenho, 1996), PC (Bezdek, 1981), AWE 
(Banfield and Raftery, 1993), MIR (Windham and 
Cutler, 1992), ALL, ANC, WID (Cutler and 
Windham, 1994) by varying the number of mixture 
components, the degree of separation between 
components and the mixing proportions. The authors 
concluded that PC was the least successful criterion 
and report good results for MDL and AWE. The 
study by Andrews and Currim (2001) compared the 
performance of AIC (Akaike 1993), AIC3 (Bozdogan, 
1994), BIC (Schwartz, 1978), CAIC (Bozdogan, 
1987), ICOMP (Bozdogan, 1993), NEC (Celeux and 
Soromenho, 1996) and the validation sample log 
likelihood (Andrews and Currim, 2001a) 
manipulating eight data characteristics, namely: true 
number of segments, mean separation between 
segment coefficients, number of individuals, number 
of observations per individual, number of predictors, 
error variance, minimum segment size and 
measurement level of predictors. The authors found 
that AIC3 is the best criterion to use with mixture 
regression models. The work by Sarstedt (2008) 
evaluated how the interaction between sample size 
and number of components affects the performance 
of the four most used criteria used in market 
segmentation according to a meta-analysis study - 
AIC (Akaike, 1973), AIC3 (Bozdogan, 1994), CAIC 
(Bozdogan, 1987) and BIC (Schwartz, 1978). The 
author concluded that AIC shows an extremely poor 
performance and that AIC3 outperforms the other 
considered criteria across all simulation experiments. 
Moreover, using AIC may not provide satisfactory 
performance, especially when the sample size is 
small and tend to fit too many components (i.e., 
overcluster).  
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Table 1. Information Criteria and Classification Criteria 

Criteria Description Reference 

IN
FO

R
M

A
T

IO
N

 C
R

IT
E

R
IA

 
Kullback-Leibler Estimators 

Akaike Information Criteria AIC 2 ln 2L k    Akaike (1973) 

Modified AIC 3 3AIC 2 ln 3L k    Bozdogan (1994) 

Modified AIC 4 4AIC 2 ln 4L k    Bozdogan (1994) 

Small sample AIC     c
AIC AIC 2 1 1k k N k      

Hurvich and Tsai (1989, 
1995) 

Bayesian Criteria 
Bayesian Information 

Criteria BIC 2 ln lnL k N    Schwartz (1978) 

Adjusted BIC  Yang (1998) 
Consistent Criteria

Consistent AIC   CAIC 2ln ln 1L k N     Bozdogan (1987) 

CAIC with Fisher 
Information 

CAICF AIC log logk N   F  Bozdogan (1987) 

Information Complexity 
Criterion 

 1ICOMP 2ln ln F lnL k tr k      F

 
Bozdogan (1994) 

Hannan –Quinn  HQ 2 ln 2 ln lnL k N    Hannan and Quinn (1979) 

Minimum Description 
Length 2 2MDL 2ln 2 lnL k N    

Liang, Jaszczak and 
Coleman (1992) 

Minimum Description 
Length 5 5MDL 2 ln 5 lnL k N    

Liang Jaszczak and 
Coleman (1992)

C
L

A
SS

IF
IC

A
T

IO
N

 C
R

IT
E

R
IA

 

Fuzzy Indices 

Partition Coeficient 2

1 1
PC

N S

nsn s
p N

 
    Bezdek (1981) 

Partition Entropy 
1 1

PE ln
N S

ns nsn s
p p N

 
      Bezdek (1981) 

Normalized Partition 
Entropy  NPE PE 1 S N   Bezdek (1981) 

Nonfuzzy Index 
 2

1
1

NFI 1

S
N

nsn
s

N SS p N




    
     
 

 

Roubens (1978) 

Minimum Hard Tendency   10
1

Min max loght s
s S

T
 

   Rivera, Zapata and 
Carazo (1990) 

Mean Hard Tendency  101
Mean log

S

ht ss
T S


   Rivera, Zapata and 

Carazo (1990) 
Probabilistic Indices 

Entropy Measure 
1 1

Es 1 ln ln
N S

ns nsn s
p p N S

 
       DeSarbo, Wedel, Vriens 

and Ramaswamy (1992) 
Logarithm of the partition 

Probability 1 1
LP ln

N S

ns nsn s
z p

 
    Biernacki (1997) 

Entropy 
1 1

E ln
N S

ns nsn s
p p

 
    Biermacki (1997) 

Normalized Entropy 
Criterion    NEC E ln ( ) ln (1)s s L s L   

Celeux and Soromenho 
(1996) 

Classification Criterion C 2 ln 2EL    
Biernacki and Govaert 

(1997) 
Classification Likelihood 

Criterion CLC 2ln 2LPL    
Biernacki and Govaert 

(1997) 
Approximate Weight  of 

Evidence  AWE -2 ln 2 3 2 ln
c

L k N    
Banfield and Raftery 

(1993) 
Integrated Completed 

Likelihood – BIC ICL-BIC 2 ln 2LP lnL k N     
Biernacki, Celeux and 
Govaert (1998) 

ICL with BIC 
approximation ICOMPLBIC 2 ln 2E ln   L k N  Dias (2004) 

 
 

 
 

  242lnln2ABIC  NkL
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3. Experimental Design 
3.1. The data 

As our goal is to assess how segment retention 
criteria behave in recovering small market segments, 
the experiment is based on what we label the group 
satellite case (see Figure 1): two large and well-
separated market segments (named the independent 
and the main group) and one small market segment 
(named the satellite group in relation to the main 
group), with a degree of separation small, medium or 
large to the main group. As benchmarking case we 
consider two well-separated clusters with equal size. 
This second data enables us to evaluate in what 
extend segment retention criteria loose performance 
when we add a small market segment to the market 
segmentation solution. 

 

  

Independent Group Main Group Satellite Group 

 

Figure 1. Satellite Group Case 

In this experiment we consider six predictors, 
three continuous and three binary, 300 individuals 
with 10 observations per individual (yielding 3000 
observations per data set) and an error variance of 
20%. We first computed, for each subject n and all 
replications: U=Xβ; subsequently we added an error 
termto these true values U, Y=U+ε; the variance of 
the error term was obtained from (9) (Wittink and 
Cattin, 1981, Vriens et al., 1996):  

2
2 2

2 2 1





  
 

       
u

u

PEV
PEV

PEV
  (9) 

where PEV is the percent of error variance, 
2
u  

is the variance of U and 
2
  is the variance of the 

error term ε.  

The mean separation between the segment 
coefficients is set large between the independent and 
the main group, and large (l), medium (m) or small 
(s) between the main and the satellite group, as 
detailed subsequently. We first randomly generate the 
vector of parameters for the main group 

Mainβ in the 

range of -1.5 to 1.5. Next, we compute a vector of 
separations with mean 1.5 (

l ), 1.0 (
m ) or 0.5 (

s ) 

and standard deviation 10% of the mean. Then, we 
generate a vector of sign 

S  for 
iδ , , ,i l m s , yielding 

segments that are not more sensitive than the others 
in every way. We then compute a vector of 
coefficients for the Satellite Group 

Sat Main i

 β β S δ , , ,i l m s  (element by element) and 

a vector of coefficients for the Independent Group 

Ind Main l

 β β S δ . Although we considered minimum 

segment sizes to the satellite (5% to 10%), main 
(40% to 50%) and independent (40% to 55%) groups, 
the segment size is randomly generated in these 
ranges.  

The likelihood function was maximized using 
the EM algorithm implemented into the Gauss 
package that was run repeatedly with three 
replications in order to avoid its convergence to local 
maxima. Then, for each number of mixture 
components, the best solution was retained. 

For simplicity, we named each experimental 
design with the following notation Design Type 
(group satellite - GS or benchmarking - B)/Degree of 
separation between the main group and the satellite 
group (large – L, medium – M or small - S). 

3.2. Performance Measures 

We evaluate the performance of segment 
retention criteria by their success rate, or the 
percentage of datasets in which the criteria identify 
the correct number of segments; we also consider the 
over fitting rate and the under fitting rate. Given two 
criteria with similar success rates, we prefer the under 
fitting to the over fitting. Indeed, empirical results 
show that over fitting produces larger parameters bias 
than under fitting does (Andrews and Currim, 
2003a,b), sometimes produce very small segments 
with large or unstable parameter values (Cutler and 
Windham, 1994) and may result in fitting spurious 
regressions in non-existent components (Naik, 2007).  
Moreover, from a managerial stand point in this 
specific experiment, a solution with 2 market 
segments where the consumers belonging to the 
group satellite case are assigned to the main group 
seems to make more sense than a solution with 4 
segments. 

3. Results 

Table 2 shows the success rates (S), rates of over 
fitting (O) and rates of under fitting (U) for the four 
designs. As example, to the GS/L experiment AIC 
correctly identified the true number of segments in 
58% of data sets, over fitted the number of 
components in 40% of the data sets and under fitted 
the number of components in 2% of these data sets.  
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Table 2. Rates of underfitting (U), success (S) and (O) overfitting by design  

CRITERIA  
B/- GS/L  GS/M  GS/S 

S U S O U S O U S O 
IN

F
O

R
M

A
T

IO
N

 C
R

IT
E

R
IA

 

AIC 76% 2% 58% 40% 3% 52% 45% 18% 34% 48% 

AIC3  99% 18% 78% 4% 37% 59% 4% 33% 34% 33% 

AIC4  100% 18% 77% 5% 35% 61% 4% 41% 33% 26% 

AICc 76% 2% 59% 39% 3% 52% 45% 18% 34% 48% 

BIC 100% 18% 77% 5% 34% 61% 5% 74% 18% 8% 

ABIC  100% 16% 77% 5% 35% 61% 4% 66% 33% 1% 

CAIC 100% 18% 77% 5% 34% 60% 6% 84% 11% 5% 

CAICF 100% 23% 59% 18% 21% 58% 21% 47% 20% 33% 

ICOMP 90% 4% 56% 40% 5% 60% 35% 28% 31% 41% 

MDL2  100% 17% 77% 6% 26% 59% 15% 97% 3% 0% 

MDL5  100% 24% 71% 5% 71% 29% 0% 100% 0% 0% 

HQ 100% 18% 77% 5% 35% 61% 4% 44% 31% 25% 

C
L

A
S

S
IF

IC
A

T
IO

N
 C

R
IT

E
R

IA
 

Es  94% 36% 55% 9% 95% 4% 1% 91% 8% 1% 

E 100% 69% 29% 2% 99% 1% 0% 97% 3% 0% 

LP 100% 65% 33% 2% 96% 3% 1% 96% 4% 0% 

AWE 100% 14% 77% 9% 36% 56% 8% 99% 1% 0% 

NEC 92% 45% 53% 2% 98% 2% 0% 92% 8% 0% 

CL 64% 9% 40% 51% 5% 42% 53% 21% 35% 44% 

CLC 81% 13% 48% 39% 5% 48% 47% 27% 29% 44% 

ICLBIC 100% 13% 77% 10% 26% 61% 13% 87% 10% 3% 

ICOMPLBIC 100% 13% 77% 10% 19% 60% 21% 91% 7% 2% 

PC 94% 66% 27% 7% 98% 2% 0% 94% 6% 0% 

PE 91% 69% 19% 12% 74% 26% 0% 78% 19% 3% 

NPE 91% 69% 19% 12% 75% 25% 0% 78% 19% 3% 

NFI 87% 65% 20% 15% 69% 30% 1% 71% 28% 1% 

MEANht  96% 45% 49% 6% 95% 3% 2% 94% 5% 1% 

MINht  73% 45% 33% 22% 50% 33% 17% 52% 32% 16% 

 
 

 

As expected, all the criteria perform better in the 
benchmarking case than in the group satellite case. 
Indeed, almost all criteria exhibit high performance 
rates for two well separated segments with equal 
samples sizes, ranging from 64% to 100%. 

The results also revealed that almost all criteria 
have higher success rates for larger separation rates 
between the main group and the satellite group. 

In general, the information criteria AIC3, AIC4, 
HQ, BIC, ABIC, CAIC and the classification criteria 
ICL and ICLBIC have the best overall performance 
in recovering a small market segment. The criteria 
AIC, ICOMP, CL and CLC present the undesirable 
tendency to overestimate the number of components, 
and fuzzy indices and some probabilistic indices 
exhibit high rates of under fitting. 

4. Conclusion 

As the correct number of segments is unknown 
in market segmentation applications, a though 
understanding of measures that guide model selection 
decision is of fundamental importance. Indeed, if 
managers take the wrong measure into consideration, 
their decisions may be misguided. Since previous 
studies point out that market characteristics affect the 
accuracy of segmentation retention criteria, this study 
addressed a special market condition not considered 
in previous studies, that is considering into the same 
simulated sample market segments with different 
degrees of separation and different sizes. Indeed, this 
study offers researchers and practitioners with a 
better understanding of the effectiveness of 27 criteria 
in recovering small market segments. 
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It is generally clear from comparing the results 
of this study to those of Andrews and Currim 
(2003a), Hawkins et al., 2001 and Sarstedt (2008) 
that almost all criteria perform well when there are 
two well separated market segments with the same 
sample size. The presence of a niche market adds 
complexity to the decision. However, most of the 
information and classification criteria observe 
improvements in average accuracy rates for a larger 
separation between the main and the group satellite 
case. 

Our simulation results revealed that both 
information criteria - AIC3, AIC4, HQ, ABIC, BIC 
and CAIC - and classification criteria - ICLBIC, 
ICOMPLBIC - are the best segment retention criteria 
to recover small niche segments. This result is 
consistent with Hawkins (1999: 70) who stated that 
“augmented complete log likelihood functions may be 
the next generation of measures for investigation”.  
However, some of these criteria (i.e., AIC3, AIC4, 
HQ, ICLBIC, ICOMPLBIC) are rarely applied in the 
market segmentation literature (Sarstedt, 2008). 
Furthermore, the accuracy of AIC3 is being consistent 
in different studies addressing different data 
characteristics in mixture regression models for 
normal data (Andrews and Currim, 2003; Sarstedt, 
2008). 

As researchers rely on heuristics as information 
and classification based criteria to guide them on the 
selection of the number of market segments to pick, a 
thorough understanding of the performance of these 
measures across different data characteristics is of 
utmost importance. We also emphasize the 
importance of applying criteria to decide the adequate 
number of segments that have been validated, given 
that results can be substantially different depending 
on the choice of method in practice. We also maintain 
that there is significant room for improvement in 
current practice and that more research is necessary, 
to be confident in recommending the most 
appropriate criteria or set of criteria. In fact, this work 
could be extended by considering other scenarios 
characterized by two or more niche markets.   
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