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Abstract - In this paper, we propose a fractional 

stochastic volatility jump-diffusion model which 

extends the Bates (1996) model, where we model 

the volatility as a fractional process. Extensive 

empirical studies show that the distributions of 

the logarithmic returns of financial asset usually 

exhibit properties of self-similarity and long-

range dependence and since the fractional 

Brownian motion has these two important 

properties, it has the ability to capture the 

behavior of underlying asset price. Further 

incorporating jumps into the stochastic volatility 

framework gives further freedom to financial 

mathematicians to fit both the short and long 

end of the implied volatility surface. We propose 

a stochastic model which contains both 

fractional and jump process. Then we price 

options using Monte Carlo simulations along 

with a variance reduction technique (antithetic 

variates). We use market data from the S&P 500 

index and we compare our results with the 

Heston and Bates model using error measures. 

The results show our model greatly outperforms 

previous models in terms of estimation 

accuracy. 

Keywords - Hurst exponent, Jump-Diffusion, 

Fractional stochastic volatility model, Option 

pricing, Long-range dependence.  

1. Introduction 

As the market for financial derivatives 

continues to grow, the success of option pricing 

models at estimating the value of option premiums 

is under examination. Since Black and Scholes 

(Black and Scholes, 1973) published their seminal 

article on option pricing based on Brownian motion 

in 1973, there has been an explosion of theoretical 

and empirical work on option pricing. However, In 

the Black and Scholes model, a basic assumption is 

that the volatility is constant. It was soon 

discovered that this assumption does not allow 

matching an entire option chain (option values for 

different strike values) (See: Heston, 1993; Bates, 

1993). i.e. the well-known volatility smile/skew 

phenomena. This phenomena has been considered 

as a result of the non-Gaussian behavior of the 

distribution of the return rate: compared to the 

perfect bell-curve of normal distribution, the 

ground true distribution (although not observable) 

is skewed and leptokurtic with long term memory 

and correlated increments (Chao et al., 2018). So, 

over the last forty years, a vast number of pricing 

models have been proposed as an alternative to the 

classic Black-Scholes approach. 

One of the most popular extensions of the 

classical Black-Scholes model is to allow the 

volatility to be a stochastic process (Alòs and 

Yang, 2014). 

The Black-Scholes model assumed that the 

volatility of the underlying security was constant, 

while stochastic volatility models categorized the 

price of the underlying security as a random 

variable or more general, a stochastic process. In its 

turn, the dynamics of this stochastic process can be 

driven by some other process (commonly by a 

Brownian motion) (Thao, H.T.P. and Thao, T.H., 

2012). In a stochastic volatility model, the volatility 

changes randomly according to stochastic 

processes. This additional random source helps to 

partially explain why options with different strikes 

and maturities have different implied volatilities, 
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which have been observed in market prices. 

At about the same time as the stochastic 

volatility models were developed researchers 

argued that the bad fitting to real data was caused 

by the path continuity of the price process. Thus, 

the resulting model may have difficulties fitting 

financial data exhibiting large fluctuations. The 

necessity of taking into account large market 

movements and a great amount of information 

arriving suddenly (i.e., a jump) led researchers to 

propose models with jumps (Florescu et al., 2014). 

Studies by Bates (Bates, 1991; Bates 1996) 

indicate that stochastic volatility and jumps are 

both features of the real world process and both 

effects are reflected in option prices (Albanese and 

Kuznetsov, 2005). Further, to capture jumps or 

discontinuities, fluctuations in this paper we use the 

Bates model as a base for pricing options.  

In addition, extensive empirical studies show 

that the distributions of the logarithmic returns of 

financial asset usually exhibit properties of self-

similarity and long-range dependence in both auto-

correlations and cross-correlations. Since the 

fractional Brownian motion has the two important 

properties (self-similarity and long-range 

dependence), it has the ability to capture the 

behavior of underlying asset (stock) price 

(Podobnik et al., 2009; Pan and Zhou, 2017; 

Carbone et al., 2004; Wang, 2010a; Wang, 2010b; 

Wang, 2012; Sónia et al., 2008; Carbone, 2004). 

Further, to capture jumps or discontinuities, 

fluctuations and to take into account the long 

memory property, combination of jumps and 

fractional stochastic volatility is introduced in this 

paper. And due to the non-Markovian nature of the 

fractional Brownian Motion driven stochastic 

volatility, and market participants we use Monte-

Carlo simulation along with a variance reduction 

technique (antithetic variates) in this article. 

The rest of this paper is organized as follows. 

In Section 2, we start with a brief overview of 

stochastic volatility model of Heston. Then we 

show how Bates extend the Heston's model to 

models that involve jumps. In Section 3, briefly 

discusses the properties of fractional diffusion and 

its applications to option pricing. Then we present 

our approximative fractional stochastic volatility 

Model, which is mixed with a jump-diffusion 

model of market dynamics and we call it FSVJD 

model. Further this section is a step-by-step 

introduction to our method for exact simulation. 

And we derive a generic pricing PDE that attains 

an explicit semi-closed form solution for our 

FSVJD. As a measure long-range dependence, 

Hurst exponent Estimation is presented in Section 

4. We use the different techniques to calibrate it. In 

Section 5, we calibrate our option pricing model to 

data obtained from the real market, namely we use 

daily data for S&P 500 Options. We give some 

numerical results and compare our model with 

Heston and Bates models. Section 6 draws the 

concluding remarks.  

2. Sochastic volatility and Jump-

Diffusion process 

An extension to the assumption of constant 

volatility is to allow time dependence of volatility 

of the form .When taking the term 

structure into account one still can't account for the 

fact that different strikes give different implied 

volatilities. Dupire (Dupire, 1994) proposed a local 

volatility model, where volatility is both time and 

state dependent. He showed that it was possible to   

find  that accounts for the dynamics of 

the whole volatility surface (Clark, 2012).  

Perhaps a more realistic assumption is that 

volatility is random in its behavior. The most 

popular model in this case is the one by Steven 

Heston (Heston, 1993). In 1993 Heston proposed a 

model where the volatility itself follows a random 

process, a so called square-root process. Under the 

risk-neutral measure , the model takes the 

following form: 

                         (1) 

          (2) 

                                         (3) 

where  denotes the stock price,  is the risk-

neutral rate of return, and  and  are two 

correlated Brownian motions under the risk-neutral 

measure, which are assumed to be stochastically 

independent under the original model. 

represents a long term variance,  is the long 

term mean of  ,  denotes the speed of reversion 

and the last parameter  denotes volatility of .  
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Another interesting approach in option pricing 

is the inclusion of jump processes. To improve 

flexibility of models and to enhance market 

calibration, many academics and professionals 

suggested a jump-diffusion modification of the 

stock price process . Robert C. Merton in 1976 

(Merton, 1976) was the first one who introduced a 

model to utilize jump-diffusion processes in 

finance.  Further the Bates model was introduced 

by David Bates (Bates, 1996) in his 1996 paper and 

is an extension of the Heston model to include 

jumps in the stock price process. Bates referenced 

previous research showing that asset price variance 

is not constant—a theoretical validation for the SV 

model - and that asset price sample paths 

sometimes involve discontinuous jumps - a 

theoretical validation for the jump-diffusion model 

- and combined the two into the SVJD model 

(Kitchens, 2014). The model has the following 

risk-neutral dynamics defining the evolution of : 

                  (4) 

           (5)                        

                          (6)                                        

Where volatility process  is the same as that in the 

Heston model and the driving Brownian motions in 

the two processes have an instantaneous correlation 

equal to . Under the notation  we understand 

. The process  represents a Poisson 

process under the risk neutral measure, with jump 

intensity . The percentage jump size of the stock 

price is dictated by the random variable , with 

         (7) 

where the relationship between  and  is given 

by 

                        (8) 

3. Fractional Stochastic Volatility with 

Jump Diffusion (FSVJD) Model 

 

Comte and his colleagues, by the introduction 

of fractional noises, generalized the classical 

Heston model to account for long memory features 

of stochastic volatility (Comte and Renault, 1998; 

Comte et al., 2001). This technique allows to 

explain some option pricing puzzles such as steep 

volatility smiles in long term options and co-

movements between implied and realized volatility 

(Bezborodov et al., 2016). Therefore to take into 

account the long memory property, and to get 

fluctuations form financial markets, it is suitable to 

apply the mixed fractional Brownian motion to take 

fluctuations from financial asset (see: Xiao et al., 

2012; El-Nouty, 2003; Foremski et al., 2014). The 

mixed fractional Brownian motion is a family of 

Gaussian processes that is a linear combination of 

Brownian motion and fractional Brownian motion 

(Shokrollahi and Kılıçman, 2014). 

In the mixed fractional Brownian motion, we will 

consider a process like this Instead of the usual 

fractional Brownian motion: 

                (9) 

where H is a long-memory parameter ranging in [0, 

1], and known as the Hurst exponent. If   = 1/2, 

then  is the usual standard Brownian motion. 

The process has a long memory for H > 1/2. Thus 

we consider only values of the Hurst parameter in 

this range (Sobotka et al., 2016). Moreover, we can 

approximate Bt by: 

       (10) 

such that  converges to   as  tends to 0. The 

use of approximation  instead of  provides 

several advantages. Firstly, there is no arbitrage 

opportunity under the approximative model 

dynamics for a wide class of simple and self-

financing portfolios. Secondly, if we drive the 

process of  as fractional process, we can use a 

standard Ito stochastic calculus instead of more 

advanced mathematical techniques for derivation of 

pricing PDE’s. 

Therefore here we are going to derive a 

general valuation PDE for stochastic volatility 

models without jumps and then generate the 

characteristic functions and at the end to consider 

jumps, we will add a characteristic function of a 
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compound, compensated Poisson process to our 

model. Hence To describe approximative fractional 

approaches, we start with self-financing portfolio1 

concept. Let  be the value of self-financing 

portfolio x at time t. Let x be delta and vega hedged 

(i.e. ) and let it consist of one 

option priced ,  units of the 

underlying stock with a price  and  

units of another option with 
Then the portfolio value is 

determined by the following expression:  

                         (11) 

The portfolio is self-financing and thus a change in 

its value is given by: 

               (12) 

Using Ito lemma, we can derive expressions for 

differentials  and , 

                                                 (13) 

                                                                  (14) 

Having explicitly expressed  and  and 

hedging assumptions, we substitute the differentials 

into equation: 

=                                     (15) 

                                                           
1 The change in portfolio value Π is  given only by changes 

in prices of the underlying assets for constant positions. And we 
cannot withdraw nor add funds to the portfolio. 

we assume that there is a unique risk-free rate 

which we denote by r. We also utilize values of 

hedging parameters ∆, ∆1. 

    (16)        

                  (17)              

                             (18)                         

Each side of Eq.(18) depends either on 

 or . Both sides 

have to be equal to some function 

. In our case, we will closely 

follow [Gatheral, (2006)] and without loss of 

generality we set , where 

according to the Capital Asset Pricing Model 

(CAPM),  represents the market price of 

volatility risk. As we are interested in the price of 

option , we use just the left-hand side of Eq.(18). 

We also express the equation in terms of logarithm 

of the stock price , rather than S. 

       (19)                                                                                                     

                                       (20) 

To simplify the last equation, we substitute τ 

= T − t, where T is the time to maturity of option . 

We also express the equation in terms of 

logarithm of the stock price , rather 

than S. 

                             (21) 

To obtain unique option prices, we chose the 

risk-neutral drift of , defined as 

, which rules out  from our 

equations. 
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                                              (22) 

Price of a call option has to satisfy Eq.(22) 

with initial condition that is given by the pay-off 

function of the call option: . 

The price can be also expressed as an expectation 

of the discounted pay-off: 

         (23)                                                                                       

We can substitute Eq.(23) for  in Eq.(22). 

For , , we obtain the PDE with 

respect to P only. 

                (24) 

Following similar arguments, we are able to 

retrieve the PDE for  by setting 

, . 

                                            (25) 

Instead of solving the system of two PDEs Eq.(24)- 

Eq.(25) directly, we express characteristic 

functions of the log-price at maturity T. After 

characteristic functions  for j  , 

are known, we can easily obtain  using the 

inverse Fourier transform. 

                  (26)                                                                     

As in the original paper by Heston (Heston, 

1993), we assume that characteristic functions  

are of the following form: 

       (27) 

Firstly, we substitute assumed expression 

Eq.(27) for 

                                   (28) 

Instead of a general drift of variance process , 

we assume a linear drift term with respect to , i.e. 

. After rearranging 

terms with ,  and factoring out  we obtain: 

                                                       (29) 

Since we assume that  

 

           (30)                                                                 

                         (31)                                                   

Following the same steps, one can obtain a system 

of equations for  as well. Therefore characteristic 

functions  defined by Eq.(27) have to satisfy the 

following system of four differential equations: 

                                (32)            

      

     (33)     
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                            (34)                                                                

And with respect to the initial condition: 

                  (35)                                                

We can obtain the first two equations which 

are known as Riccati equations. And after that we 

can solve the last two ODE's by a direct integration. 

We will rewrite equations Eq.(32) and Eq.(33) as 

following form: 

            (36)                                     

Let us also denote: 

  

Thus our solution would be: 

                                      (37)                                 

In the next step, we integrate the right-hand side of 

Eq.(34) to express  

        (38)                   

For diffusion stochastic volatility models, we 

obtain characteristic functions in the form of:  

  

       (39)                  

         (40)    

where for  

      (41)          

              (42) 

    

                                                                  

 

In case of the models with jumps (Bates 

model), we also need to include a characteristic 

function of a compound, compensated Poisson 

process, denoted by ψ.                                                                             (43) 

Thus in a model with jumps we must add the 

following function to other functions: 
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                            (44)  

To consider long memory we add Hurst 

parameter to Bates model to have advantage of 

jumps and long memory together. In this case by 

adding the Hurst parameter to the Bates model we 

reach to the characteristic functions of our FSVJD 

model in the following form: 

                                                                            (45) 

where for  and :  

  (46)                          

                     (47)                                   

                  (48)            

                                             

 

4. Estimation of the Hurst exponent 

We utilize several techniques to measure long-

range dependence (LRD) in a given time-series. 

These techniques are well developed and 

implemented in various programming frameworks. 

In this section, we will focus on estimation of the 

Hurst exponent which is related to ,  

.                                             (49) 

If we recall, , one can easily see that for 

LRD processes  takes values from  to  

(Beran, 1994). 

We employed synthetic data to find the best 

Hurst estimation method along these five 

techniques: Aggregate Variance method, Geweke-

Porter-Hudak estimator, Higuchi method, Peng 

method, Periodogram analysis, and Rescaled range 

analysis. Which are introduced in (Beran, 1994; 

Geweke and Porter-Hudak, 1983; Higuchi, 1988; 

Hurst, 1951; Peng, et al., 1994). 

To estimate the Hurst exponent from volatility 

data, our initial time series would be formed out of 

the increments of (simulated) volatility, i.e. the ith 

element would be:  

                                               (50) 

for i = 1, 2, ..., N − 1 while having N 

observations of the realized or simulated volatility. 

To test different estimators we have simulated 

10000 sample paths of five long-range dependence 

processes driven by fractional Brownian motions. 

Each process was simulated with different value of 

the Hurst exponent. The simulated processes follow 

a path wise SDE, where , ,  

are fixed and 

       (51) 

                 (52)      
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Table1. Average estimates of Hurst parameter and Average absolute relative errors of 

estimates 

 

 

Aggregat

e 

Variance 

method 

Geweke-

Porter-

Hudak 

estimator 

Higuchi 

method 

Peng 

method 

Periodogr

am 

analysis 

Rescaled 

range 

analysis 

H
=0

.6
0 

0.6082 

(0.0011) 

0.5988 

(0.0009) 

0.6008 

(0.0005) 

0.6082 

(0.0009) 

0.5887 

(0.0056) 

0.5946 

(0.0011) 

H
=0

.6
5 

0.6448 

(0.0005) 

0.6591 

(0.0010) 

0.6482 

(0.0007) 

0.6468 

(0.0007) 

0.6475 

(0.0010) 

0.6448 

(0.0008) 

H
=0

.7
0 

0.7096 

(0.0012) 

0.7015 

(0.0008) 

0.7064 

(0.0019) 

0.6951 

(0.0005) 

0.7156 

(0.0032) 

0.6931 

(0.0013) 

H
=0

.7
5 

0.7403 

(0.0007) 

0.7702 

(0.0065) 

0.7552 

(0.0009) 

0.7469 

(0.0011) 

0.7403 

(0.0015) 

0.7512 

(0.0012) 

H
=0

.8
0 

0.8089 

(0.0010) 

0.7902 

(0.0010) 

0.8022 

(0.0006) 

0.8041 

(0.0008) 

0.8012 

(0.0003) 

0.7905 

(0.0009) 

H
=0

.8
5 

0.8543 

(0.0012) 

0.8422 

(0.0009) 

0.8551 

(0.0007) 

0.8513 

(0.0005) 

0.8352 

(0.0049) 

0.8434 

(0.0011) 

A
ve

ra
ge

 

ab
so

lu
te

 e
rr

o
rs

 

(A
A

E)
 

%0.76 %1.54 %0.96 %0.56 %1.1 %1.01 

 

After synthetic data were generated, we used 

procedures to obtain an estimate of the Hurst 

parameter alongside variance of the estimates. The 

most satisfying results were obtained using the 

Peng method which has the lowest average error. 

 

 

 

 

 

Figure1. Estimations of the Hurst parameter 
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5. Real Market Calibration 

To calibrate models from the S&P 500 option 

market, at first we need to calibrate the parameters 

of our model. The model calibration is formulated 

as an optimization problem. The aim is to minimize 

the pricing errors between the model prices and the 

market prices for a set of traded options. A 

common approach to measure these errors is to use 

the squared differences between market prices and 

prices returned by the model, this approach leads to 

the nonlinear least square method. Mathematically 

put, given a model and a parameter set , we 

choose  as 

              (53) 

We set weights as a function of the price 

spread. Because the closer quoted ask and bid price 

are, the more efficiently is the given contract 

priced. So we minimized the criteria using the 

following weight functions: 

                (54) 

              (55) 

              (56) 

Where  is the price spread of the  call 

option. 

For comparative purposes, we also compute 

some other measures of fit such as the root mean 

square root error (RMSE), the average absolute 

error as a percentage of the mean price (APE) and 

the average absolute error (AAE): 

                                (57)      

               (58)                                 

 

     

(59)                       

For calibration, we use Option data on the 

S&P 500 index consists of 263 trading days 

ranging from February 28 2011 to February 28 

2012. Which was obtained from the Chicago Board 

Options Exchange’s historical data retailer, Market 

Data Express2. The option data is daily best bid and 

ask prices. In order to prepare the data for use, we 

needed the length in years of each option, so a new 

column was created that computed length of each 

option by subtracting the expiration date from the 

quote date and converting into years. For any given 

day, there are many different strike prices and 

expiration lengths offered for options. We estimate 

the risk-neutral parameters for each model by 

inverting option prices in the training sample and 

use these estimates to predict prices of options in 

the test sample. We use Local Search method for 

calibrating the parameters of  Heston, Bates and 

FSVJD models. And alongside we utilize weights 

Eq.(54), Eq.(55) and Eq.(56) to find the best 

calibration result.  

Table 2. Calibration error measure for 

different weights 

Models 
Error 

measure    

Heston 

RMSE 3.4521 3.1325 3.3585 

APE 0.1325 0.1158 0.1317 

AAE 2.8546 2.8343 3.7562 

Bates 

RMSE 3.2384 2.8923 2.9512 

APE 0.0853 0.0571 0.0989 

AAE 2.8646 2.0456 2.8664 

FSVJD 

RMSE 2.8453 2.2598 2.6288 

APE 0.0786 0.0368 0.0756 

AAE 1.8435 1.7568 2.2548 

                                                           
2 The product is called Option and was purchased from 

www.marketdataexpress.com via a link on www.cboe.com. 
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According to these results we obtained the 

best fit for . So we employed this weight in 

our parameter calibration.  Table 3 contain 

parameter calibration results of all three models.

 

Table 3. Calibrated parameters of the Heston, Bates and FSVJD model. 

 
Heston Bates FSVJD 

 

0.0069 0.0064 0.0084 

 

1.2865 5.5863 2.0588 

 

0.0575 0.0534 0.0975 

 

0.0775 0.0856 0.0739 

 

0.9889 0.9889 0.991 

 

- 0.7546 0.9548 

 

- 0.9523 1.0133 

 

- 0.2941 0 

 

- - 0.6225 

 

Therefore, by these parameters we can 

calculate the price of a European option with our 

proposed model. We use Monte Carlo simulation to 

generate an unbiased estimator of the price of 

options. In addition, it provides a convenient 

framework with which to approximate jumps in 

asset price. When using Monte Carlo simulation, 

many sample paths of the state variables are 

generated and the payoff of the derivative is 

evaluated for each path. Discounting and averaging 

over all paths gives an estimator of the derivative 

price. The error in the Monte Carlo estimator can 

be calculated using the central limit theorem and 

converges to zero as the number of sample paths 

used increases (Broadie and Kaya, 2006). Further 

we use a variance reduction technique, named 

Antithetic Variate, to improve the Monte Carlo 

simulation. So that sample sizes can be reduced for 

a given Monte Carlo variance. We draw from 

[Poklewski-Koziell, 2009] for our treatment on 

Monte Carlo methods for the Heston, Bates and 

FSVJD models. After pricing options with our 

FSVJD model, to have a comparison with two 

other well-known stochastic models, Heston and 

Bates, we compute the option prices with these 

models too. And here in table 4 we can see the 

comparison using three error measures (RMSE, 

APE, AAE). 

Table 4. Pricing errors for all three models 

 Heston Bates FSVJD 

RMSE 4.0254 3.8426 3.1578 

APE 0.0845 0.0718 0.0395 

AAE 3.2454 2.8574 2.2157 

 

As we see the results, we obtained the best fit 

(in terms of all measured errors) for the FSVJD 

model. And it is clear that the fractional model 

significantly improves the performance of the 

stochastic option pricing model. 
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6. Conclusion 

In this paper, we compared several 

optimization approaches to the problem of option 

market calibration. For the empirical study we 

chose a popular SV model, firstly introduced by 

Heston (1993), and a more up to date 

approximative Fractional Stochastic Volatility 

model (FSV). To improve the model and to have a 

closer results for option pricing and to consider the 

jumps in asset prices, we provide the Fractional 

Stochastic Volatility Jump-Diffusion model 

(FSVJD). Actually the FSVJD model is the Bates 

model which has a Fractional Brownian Motion, 

once the fractional Brownian motion has the two 

important properties (self-similarity and long-range 

dependence) and we think it can improve the 

famous Heston and Bates models. For this reason 

after the semi-closed form solution of a generic 

pricing PDE is derived, we computes the Hurst 

exponent as a measure of long range dependence. 

We employed synthetic data to find the best Hurst 

estimation method. The most satisfying results 

were obtained using the Peng method which has the 

lowest average error. To calibrate the parameters of 

models alongside S&P 500 index call options we 

chose the best weight to fit the data for calibration. 

Local search method was used in order to minimize 

the difference between the observed market prices 

and the model prices and actually calibrating 

parameters of our FSVJD model and also Heston 

and Bates models. Then we price the options. The 

numerical results of presented in table 4 show that 

the FSVJD model works well against Heston and 

Bates models. We believe the complexity of the 

FSVJD model opens space for fine tuning the 

global optimizers. 
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