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Abstract— The optimization problems are not so Definition 1.2

important now in the field of production. But in the

minimization risk problems, in profits maximization
problems, in Marketing Research, in Finance, they @
completely actual. An important example is the prokem
of minimizing portfolio risk, demanding a certain mean
return. The main mathematical tool to solve these

An inner product, in a complex vector spadeis a
strictly positive sesquilinear hermitian functiorat
H.

Observation

problems is the convex programming and the main

result is the Kuhn-Tucker Theorem. In this work that - In real vector spaces sesquilinear
result mathematical fundaments, in the context of eal hermitian must be substituted by bilinear
Hilbert spaces, are presented. symmetric.

- The inner product of two vectossandy
belonging taH, by this order, is designated
by [x, y].

- The norm of a vectox will be given by
|x| = /[x, x].

- The distance between two elemertand
yof Hwillbed(x,y) = |x — y|.

Keywords—  Convex Kuhn-Tucker’'s

Theorem, Optimization.

programming,

1. Introduction

As an application of convex sets separation thesrem
in Hilbert spaces, a class of convex programming
problems, where it is intended to minimize convex

functionals subject to convex inequalities, is Definition 1.3
considered.
A setK c H is convex if and only if
Note that
o Vx_yeK V9€[0,1] 0x + (1 - H)y EK.
Definition 1.1

. . o Definition 1.4
A Hilbert space is a complex vector space with inne

product that, as a metric space, is complete. A functionalp defined inH is convex if and only if

The Hilbert spaces are designated in this papét by
or I. Remember that
Viyek Yoep,1; pOx+ (1 —0)y)
<op(x)+ (1 -0)p).

International Journal of Latest Trends in Finance & Economic Sciences
[JLTFES, E-ISSN: 2047-0916

Copyright © ExcelingTech, Pub, UK (http://excelingtech.co.uk/)



Int. ] Latest Trends Fin. Eco. Sc.

112

Volume 2 Issue 2 June, 2012

Then the separation theorems in Hilbert spaces,
geometric consequences of Hahn-Banach thedrem,
fundamental to the sequence of this work are
presented.

Theorem 1.1

Be A andB two convex sets in a Hilbert spakke If
one of them, for instanck has at least an inner point
and(intd) N B = @, so there is at least a non-null
vectorv such that

sup[v, x] < inf[v, y].
X€EA YEB

Theorem 1.2

Given a closed convex sAtin a Hilbert spacél and
a pointx, € H not belonging td\, there is a non-null
vectorv such that

[v,x0] < chgg [v, x].

Theorem 1.3

Two closed convex subsefs and B, of a Hilbert
space, each other finite distanced, that is: shah t

Hmﬂﬁﬂx_ﬂ=d>0

may be strictly separated. That is: there is astl@a
v € H for which

sup[v, x] < inf[v, y].
X€EA YEB

Theorem 1.4

BeingH a finite dimension Hilbert space, Af andB
are convex sets, not empty, disjoint so they can

! Theorem (Hahn-Banach)

Be p a positively homogeneous convex functional defined
in a real vector spadeandL, aL subspace. If; is a linear
functional defined ir, fulfilling the condition,

fo(x) < p(x), Ve,

S0 exists an extensidmof f, defined inL, linear, and such
that

f(x) < p(x), Vyer- -

always be separated, that is: there is at leagina n
null vectorv such that

sup[v, x] < inf[v,y].
XEA YEB

Finally an important property of the Hilbert spaces
convex continuous functionals:

Theorem 1.5

A continuous convex functional in a Hilbert space
has minimum in any limited closed convex set.

Demonstration:

If the space is of finite dimension, obviously the
condition of the convexity for the set is not nede
In spaces of infinite dimension, note thafif,} is a
minimizing sequence, so, as the sequence is bounded
it is possible to work with a weakly convergent
sequence and there is weak lower semi continuity,
see for instance (1}imf(x,) = f(x), calling f (.)

the functional, wherex is the weak limit, and
consequently the minimum i$(x). As a closed
convex set is weakly closed,belongs to the closed
convex Ses.

2. Kuhn-Tucker’'s Theorem
From now on only real Hilbert spaces are considered
Theorem 2.1 (Kuhn-Tucker)

Be f(x), fi(x),i=1,..,n, convex functionals
defined in a convex subsétof a Hilbert space.

Consider the problem
mip /()
sub: f;(x) <0,i=1,..,n.

Be x, a point where the minimum, supposed finite, is
reached.

Suppose also that for each veatoin E,, (Euclidean
space of dimension), non-null and such that, >
0, there is a point in C such that

n

Z U fre(x) <0

k=1

(2.1)

whereu, are the coordinates af

Thus,
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i) There is a vectown, with non negative
coordinate,,, such that

min {f(x) +) ki (x)}
k=1

= F@) + ) vifixo)
k=1
= f(xo), (2.2)
i) For any vectow in E, with non negative

coordinates (it is also said: belonging to
the positive cone af},)

FG)+ D vefe®) = fxo)
k=1
+ Z vifi(%0 = f(x0))
k=1

) wfix). 23)
k=1

Demonstration:

Be the seté\ andB in E,,  ;:

Ay = Vo, Y1, s Yn) € Enya:yo = f(X), i
> fi(x)for some xin C, k
=1,..,n},

B:{y = Vo, Y1, »¥n) € Eni1:¥0 < f(x0),y: <0,
i=1,..,n}

It is easy to verify thaA andB are convex sets in
E, 41, disjoint.

So they can be separated, that is, it is possibfind
v,k =0,1,...,n such that
n
inf v/ () + ) (@)
xeC e

= vof(x0)

~Dudnd. @8

k=1

As (2.4) must hold for anjy,|, it is concluded that
v, k=1,..,n, is non negative. In particular
approachingy, | from zero it is obtained

vof Cio) + ) vifi () 2 o f Gxp)
k=1

and as thg (x,) are non positive it follows that

n

Z Vi fie(x0) = 0. (2.5)

k=1
Then it is shown that, must be positive

In fact if the wholev,,k =1,..,n are zero,v,
cannot be zero, and fromyz, = v,y, for any
Yo < f(xg) < z,, it follows thatv, must be positive.

Supposing now that not all thg are zerok=1, ...,
n, there is ax € C such thad}_; v, fi.(x) < 0 (by
hypothesis). But for any, greater or equal thaf(x)

it must bevy(z — f(x0)) = — 2oy Vi fi (o) > 0,

and sov, must be positive. So, after (2.4) and
puttingV, = :—’;,k =1,..,nitis obtained
FGO)+ D Vifu@) = fx0)
k=1
= FG0) + ) Viefilxo)
k=1

resulting in consequence the remaining conclusions
of the theorem.

Observation:
- A sufficient condition, obvious but useful,
so that (2.1) holds is that there is a paint

in C such thaff;(x) is lesser than zero for
eachi,i =1,..,n.

Corollary 2.1 (Lagrange’s Duality Theorem)
In the conditions of Kuhn-Tucker Theorem
f(xo) = sup inf (f(x) £ wf (x))
u=0 x€eC =

Demonstration:
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u >0 means that the whole coordinateg, k =
1,..,n, of u are non negative. The result is a

consequence of the arguments used in the Theorem of

Kuhn-Tucker demonstration:

- Foranyu=>0

inf( 00+ ) i fulo) | < fx0)
k=1

£ i) < fGxo)
k=1

- In particular foru, = v,

inf( fG0)+ ) v i) | 2 Fxo).
k=1

then resulting the conclusiam.
Observation:

- This Corollary gives a process to
determine the problem optimal solution.

- If the wholev, in expression (2.3) are
positive,x, is a point that belong to the
border of the convex set determined by the
inequalities.

- If the wholev, are zero, the inequalities
are redundant for the problem, that is: the
minimum is the same as in the “free”
problem  (without the inequalities
restrictions).

3. Kuhn-Tuckers  Theorem  for
Inequalities in Infinite Dimension

In this section, the situation resulting from the
consideration of infinite inequalities will be stad.
A possible approach is:

- To consider a transformatidf(x) from a
real Hilbert spaceH to L,: space of the
summing square functions sequences.

- To consider the positive cong, in L,, of
the sequences which the whole terms are
non-negative.

- To consider the negative corng in L,, of
the sequences which the whole terms are
non-positive.

- To formalize the problem of the
minimization of the convex function§),
constrained ta € C convex, as in section
2, andF(x) € R, supposing thakF (x) is
convex.

Unfortunately the Kuhn-Tucker’s theorem does not
deal with this situation.

Similarly to the demonstration of Theorem 2.1 defin

A={(y,2):y = f(x) Nz—F(x)
€ g forany x € C},

B={(y,2):y < f(xy) N z €N},

wherex, is a minimizing point, as before. But, now,
A andB, even being disjoint, can not necessarily be
separated if neithek nor B have interior points. And
evidentlyX has not interior points.

Another way, in order to establish a generalization
may be:

- To consider a real Hilbert spadethat
encloses &losed convex cong.

- Given any two elements,y €1, x =

yifx —y € gp.
It is a well defined order relatioif x >

yandy > z,x—y€E @andy — z € p;
beingg a convex congx —y) +
(y — 2) € p,thatisx > z.

- Sog may be given by = {x € I: x = 0}
and may be callegositive cone

- The negative coneX will be given by
N=—p={xel:x <0}
Having as reference these order relation, it isipdes
to define a convex transformation in the usual why.
the coneX has a non-empty interior, a version of the
Kuhn-Tucker's theorem for infinite dimension
inequalities may be established.

Theorem 3.1 (Kuhn-Tucker in Infinite Dimension)

Call C a convex subset of a real Hilbert spatend
f(x) areal convex functional defined @
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Be | a real Hilbert space with a convex closed cone
&, with non-empty interior, and’(x) a convex
transformation fronH to | — convex in relation with
the order induced by the coge

Considerx,, a minimizing off (x) in C, constrained
to the inequalityF (x) < 0.

Call * = {x: [x,p] = 0,forany p € g} - the dual
cone.

Admit that given anyu € " it is possible to
determinex in C such thafu, F(x)] < 0.

So, there is an elemewntn the dual conegp™, such
that forxin C

fC) + [v, FOT = f(xo) + [v, F(xo)]
= f(xo) + [w, F(x)],

whereu is any element gb*.
Demonstration:

It is identical to the one of Theorem 2.1. Builchnd
B, subsets of; x I:

A={(a,y)ia=f(x),y =F(x),
for any x in C},

B = {(a‘J’):a Sf(xo)'y = 0}

In the real Hilbert spacg; x I, these sets can be
separated, sincB has non-empty interior antin B
has not any interior point d8. So it is possible to
find a number, andv € I such that, for anx in C,
aof(x) + [v, F(x)] =

aof(xo) — [v,p] for any p in 0. As this inequality
left side is lesser than infinite, it follows tHat, p] >

0, for anyp € g and s € p".

The remaining demonstration is a mere copy of the
Theorem 2.1' m.

Observation:

- Through subtle, although conceptually
complicated, generalization of Kuhn-
Tucker's theorem it was possible to
present the mathematical fundaments of
Kuhn-Tucker’'s theorem in infinite
dimension. It was necessary to define very
carefully the domains to be considered: the
Hilbert spaces and the adequate cones.

And this is a really challenging problem
from the mathematical point of view.

There is also a version in infinite dimension fbe t
Lagrange’s Duality Theorem:

Corollary 3.1 (Lagrange’s Duality Theorem in
Infinite Dimension)

In the conditions of Kuhn-Tucker's Theorem in
Infinite Dimension

Fx0) = sup mf(f () + [v, F G

Observation:

- Also, as in the former section, this
Corollary gives a process to determine the
problem optimal solution.

4. Conclusions

Convex programming is a powerful tool to solve
practical problems in various domains, namely in
Operations Research, Economics, Management, etc.
In its various branches — Linear Programming,
Integer Programming, Quadratic Programming,
Assignment  Problems and even Dynamic
Programming — it allows the mathematical modelling
of a lot of practical problems allowing a better
knowledge of them and their solution determination
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